
DDS Plugin Guide for Gimp 2.x.x
Version 0.2

By Viktor Geist, aka Visitant (visitant@yahoo.com)

mailto:visitant@yahoo.com

Purpose
Of particular importance to digital artists, game authors, and modders of games like Skyrim and Fallout
is the ability to create textures for models and games, and save them as DDS fles. And, when needed,
to open those DDS fles and edit them. Tis ability to create and edit DDS fles has been a prominent
factor when comparing Photoshop to Te Gimp. Most have gravitated toward Photoshop because they
are completely unaware that Te Gimp does in fact have a plugin that allows the creation and editing of
DDS fles, and more. Well, it does! And you can do a lot with it. For example, you can also create Cube
Maps and Volume Maps with Te Gimp’s DDS plugin.
Another interesting fact is, many (if not most) Photoshop plugins have to be purchased. Not so with
plugins for Te Gimp; they are free. Best of all, you can in fact install and use most Photoshop plugins
in Te Gimp via the PPSPI” plugin (limited to the 32-tbit versions). For example, with this plugin I can
continue to use my entire Flaming Pear suite without issue. Not counting the fact that I sometimes use
Flaming Pear when creating DDS textures, I am greatly relieved that I can still use those plugins
because I paid for the software.
Te biggest problem with the DDS plugin for Te Gimp is there is very little information that
describes how to use it, and even less information on the various options available to the user in its
menus.
Tis document is meant to fll the gap in this lack of information. I will add to it as I can, over time.
~V~

Test Information
Date of test: 2/12/2018

OS: Windows 7 Ultimate 64-tbit.

Gimp version: 2.8.22, 64-tbit

Download site: https://code.google.com/archive/p/gimp-tdds/downloads

Plugin install path: C:\Program Files\GIMP 2\lib\gimp\2.0\plug-tins

NOTE: Plugin also works in: .gimp-t2.8\plug-tins

https://code.google.com/archive/p/gimp-dds/downloads

Acknowledgments
Tis document was created using personal knowledge gleaned from experimentation with DDS fles
created and modifed using Te Gimp, and by examination of information concerning DDS fles and
their various compression types that is freely available on the internet. In every case wherein the content
of this document was derived from the internet I have made sure to link to the source pages in question.
In this way the authors get the credit they deserve. I would like to thank those authors for the
information they chose to share with the world via the internet.

A list of links to these internet sources are found on the last page of this document.

For best viewing, print this document out.
Please feel free to distribute this document as you see ft for the good of Te Gimp community.

Main Menu
Compression:

1. BC1 / DXT1
2. BC2 / DXT3
3. BC3 / DXT5
4. BC3nm / DXT5nm
5. BC4 / ATI1 (3Dc+)
6. BC5 / ATI2 (3Dc)
7. RXGB (DXT5)
8. Alpha Exponent (DXT5)
9. YCoCg (DXT5)
10. YCoCg scaled (DXT5)

DXT is a texture compression format, meaning it will stay compressed in video memory, allowing the
artist to use more or larger textures. Tere are fve DXT formats: DXT1, DXT2, DXT3, DXT4, and
DXT5. In DirectX 10 it is known as Block Compression and comes in fve basic favors: BC1, BC2,
BC3, BC4, and BC5.

Te DXT compression format can be stored inside container fles like DDS, VTF, and so on, but DDS
is the most common fle-ttype used for this purpose.

Source images must be power of two in size (i.e. 4x4, 32x8, 256x512, 1024x1024, etc.), and the smallest
size is 4x4. If you attempt to utilize a smaller size (like 1x1 or 1x256) the fle will be padded out to 4
pixels wide and/or tall.

BC1 / DXT1
Generally the best DXT format for textures with just black and white in the Alpha channel, no grays.

• In DirectX 10 it is called BC1.
• Compressed, with an optional 1-tbit Alpha (just black and white, no grays).
• Smallest fle size, half the size of DXT3 and DXT5. DXT1a is same fle size as DXT1c.
• Doesn't work very well on images that have stark color changes, like pixel art.
• DXT1a and DXT1c are the same format, just an internal switch for enabling alpha or not.

NOTE: the alpha is actually stored in the RGB data, so the black parts of the Alpha will replace the
RGB color completely. Enabling or disabling the alpha channel seems to be via selecting the Format:
option frst. RGB8 for DXT1c, and RGB8A8 for DXT1a.

BC2 / DXT2
• In DirectX 10 it is called BC2.
• Same format as DXT3, except it assumes the alpha is not pre-tmultiplied.
• Rarely used because it requires extra processing in the shader.

NOTE: Not obviously available in Gimp DDS plugin.

BC2 / DXT3
Generally the best DXT format for textures with a sharp Alpha channel.

1. In DirectX 10 it is called BC2.
2. Compressed, with "explicit" Alpha.

◦ Color is compressed the same as DXT1.
◦ In the alpha channel, each pixel is only one of 16 levels of gray.
◦ Tis works well if the alpha values are mostly black and mostly white, with thin anti-taliasing

between them.
3. Twice the fle size of DXT1, same fle size as DXT5.

BC3 / DXT4
1. In DirectX 10 it is called BC3.
2. Same format as DXT5, except it assumes the alpha is not pre-tmultiplied.
3. Rarely used because it requires extra processing in the shader.

NOTE: Not obviously available in Gimp DDS plugin.

BC3 / DXT5
Generally the best DXT format for textures with a smooth Alpha channel.

1. In DirectX 10 it is called BC3.
2. Compressed, with interpolated Alpha.

◦ Color is compressed the same as DXT1. In the alpha channel, each 4x4 block is compressed
separately from the others.

◦ Two of the pixels are stored in 256 levels of gray, while the other 14 pixels in the block are
interpolated between those two, using 8 levels of gray.

◦ Tis works well when each block has a fairly smooth gradation of values, rather than sharp
transitions.

3. Twice the fle size of DXT1, same fle size as DXT3.

BC3nm / DXT5nm
Tis is a variation of BC3 that is used to represent normal maps by encoding the X and Y components
as follows: R=1, G=Y, B=0, A=X, this swizzle is used to facilitate decompression. Normal mapping has
signifcant performance benefts over bump mapping, in that far fewer operations are required to
calculate the surface lighting.

BC4 / ATI1 (3Dc+)
Tis is a block compression format that only contains a single alpha block.

BC5 / ATI2 (3Dc)
Tis is a block compression format that contains two alpha blocks. It's typically used to compress
normal maps.

RXGB (DXT5)
A variant of BC3 / DXT 5, it modifes how the texture is read by the renderer. Requires the shader to
be rewritten especially for this kind of texture. Rarely used.

Alpha Exponent (DXT5)
A DXT5 texture with a highly compressed alpha channel. Allows a DXT5 texture to render high
quality images.

YCoCg (DXT5)
High-tquality compression of color images can be achieved by using the DXT5 format after converting
the RGB_ data to CoCg_Y. In other words, the luma (Y) is stored in the alpha channel and the
chroma (CoCg) is stored in the frst two of the 5:6:5 color channels. For color images, this technique
results in a 4:1 compression ratio with very good quality – generally better than 4:2:0 JPEG at the
highest quality setting.

YCoCg scaled (DXT5)
Same as above, except has more instructions. Improves pixel quality.

NOTE 1: Unless the texture requires another format, I would use DXT5nm as the default for creating
and saving normal maps.

NOTE 2: When creating and saving textures using the DXT5 format, I think it best to use AExp or,
preferably, one of the YCoCg-ttypes over the typical DXT5 format when possible With modern
hardware, the performance hit would be negligible.

Format:
1. Default
2. RGB8 – 8 bits per channel, no alpha channel, 24-tbit depth
3. RGB8A8 – 8 bits per channel, with alpha channel, 32-tbit depth
4. BGR8 – channels re-tordered, 8 bits per channel, no alpha channel, 24-tbit depth
5. ABGR8 – channels re-tordered, 8 bits per channel, with alpha channel, 32-tbit depth
6. R5G6B5 – RGB with 5, 6, and 5 bits per channel (respectively), no alpha channel, 16-tbit depth
7. RGBA4 – 4 bits per channel, with alpha channel, 16-tbit depth
8. RGB5A1 – RGB channels with 5 bits each, 1 bit alpha channel, 16-tbit depth
9. RGB10A2 – RGB channels with 10 bits each, 2 bit alpha channel, 32-tbit depth
10. R3G3B2 – Red and Green channels 3 bits, Blue channel 2 bits, no alpha channel, 8-tbit depth
11. A8 – export as 8-tbit alpha channel
12. L8 – export as 8-tbit greyscale alpha channel, most often used to enhance luminance
13. L8A8 – export as 16-tbit greyscale alpha channel, most often used to enhance luminance
14. Aexp – see Alpha Exponent explanation in previous section
15. YCoCg – see YCoCg explanations in previous section.

NOTE: Color depth, also known as bit depth, is either the number of bits used to indicate the color of
a single pixel in a bitmapped image or video frame bufer, or the number of bits used for each color
component of a single pixel.When referring to a pixel, the concept can be defned as bits per pixel
(bpp), which specifes the number of bits used.

Save:
1. Selected Layer

Tis box is grayed out unless you are making a Cube Map or Volume Map.

Cube Maps: Creating a Cube Map requires six layers that are all the same size and color depth, with or
without Alphas. Each layer may be uniquely named, but must have one of the correct identifers in the
name (Front, Back, Left, Right, Top, Bottom). For example: woodland_front, woodland_back, etc.
When exporting as DDS the Save: box becomes active, and if the naming is correct it will automatically
understand that you are using the layers to create a Cube Map, and the option (As cube map) will be
available.

Volume Maps: Te method for creating a Volume Map is the same as creating a Cube Map, with one
exception. You are not limited to the number of layers you want to use. You do not need to identify any
of the layers (Front, Back, etc…). On the other hand, all layers must be the same size and color depth.
Export as DDS and select As volume map for the Save: box.

Mipmaps:
1. No mipmaps
2. Generate mipmaps
3. Use existing mipmaps

Self-texplanatory.

Transparent index:
Note: Tick-tbox is grayed out as is variable box. Variable box set to 0.

I believe that when activated, it will adjust the opaqueness of a layer or alpha channel.

Advanced Options Menu
Compression

NOTE: Use perceptual error metric becomes available when some type of compression method from
main menu (Compression:) is selected.

Te Use perceptual error metric is supposed to enhance visual quality. I would suggest experimenting with
the texture in a rendering program to see how it afects the model according to the texture type
(Compression:) in question.

Mipmaps

NOTE: Warp mode:, Apply gamma correction, and Preserve alpha test coverage become available in the
Filter: menu when Generate mipmaps from main menu (Mipmaps:) is selected.

Filter:
1. Default – no fltering is applied to image. Possibly/probably causes visual anomalies such as

excessively sharp edges and stair-tstepping artifacts.
2. Nearest – bilinear flter, sharp switching between mipmaps?
3. Box – is a polyphase box flter. Outside of the Lanczos and Kaiser flters, it’s a good choice for

most cases. It’s also much faster than the other flters.
4. Triangle – uses a triangle flter. Te kernel has a larger width and thus produces blurrier results

than the box flter.
5. Quadratic – gaussian-ttype flter?
6. B-tSpline – trilinear flter?
7. Mitchell – sinc-ttype flter. Used primarily to reduce loss of detail while upsampling.
8. Lanczos – similar to the Kaiser flter, the results are usually indistinguishable between the two.

Lanczos may handle ringing and artifacts better. Can be tuned with Warp flter selections.
9. Kaiser -t Kaiser-twindowed sinc flter. It’s generally considered the best choice for downsampling

flters, but in order to obtain best results it is advisable to experiment with Warp modes as is
done with the Lanczos flter. Otherwise the resulting images could sufer from ringing artifacts
or the result may not be as sharp as desired.

Warp mode:
1. Default
2. Mirror
3. Repeat
4. Clamp

When evaluating the color of texels that are near the border, most the flters usually sample outside of
the texture. Te Default setting (1) generally looks good. From what I have observed, I think nothing is
done to the image. However, better results can be achieved by explicitly specifying the desired wrapping
mode.

Mirror (2) is probably best since it is used for many other image processing operations, like normal map
generation. Repeat and Clamp modes (3 and 4, respectively) are self-texplanatory, and I would not use
either unless the texture dictates it would be best to do so.

Apply gamma correction
NOTE: ticking this box activates Use sRGB colorspace and Gamma: parameter. Te default value for
Gamma parameter is 2.2.

Gamma, simply explained, adjusts the refectiveness of an object while also lightening (adding
whiteness) the entire scene in which the object is found. Applying this would require fne-ttuning of the
model appearance within a rendering program capable of varying the lighting conditions within a given
scene.

Preserve alpha test coverage
NOTE: ticking this box will activate Alpha test threshold parameter. Default parameter is 0.50.

I have yet to experiment with this, so I can ofer no opinion.

Sources
https://en.wikipedia.org/wiki/S3_Texture_Compression
http://wiki.polycount.com/wiki/DXT
http://www.nvidia.com/object/real-ttime-tnormal-tmap-tdxt-tcompression.html
https://github.com/castano/nvidia-ttexture-ttools/wiki/ApiDocumentation
http://number-tnone.com/product/Mipmapping,%20Part%201/index.html
http://number-tnone.com/product/Mipmapping,%20Part%202/index.html
http://www.cs.ucf.edu/~sumant/publications/sig99.pdf
https://en.wikipedia.org/wiki/Gamma_correction
http://www.nvidia.com/object/real-ttime-tycocg-tdxt-tcompression.html
https://code.google.com/archive/p/gimp-tdds/wikis/DxtCompressionQuality.wiki
https://en.wikipedia.org/wiki/Color_depth

https://en.wikipedia.org/wiki/Color_depth
https://code.google.com/archive/p/gimp-dds/wikis/DxtCompressionQuality.wiki
http://www.nvidia.com/object/real-time-ycocg-dxt-compression.html
https://en.wikipedia.org/wiki/Gamma_correction
http://www.cs.ucf.edu/~sumant/publications/sig99.pdf
http://number-none.com/product/Mipmapping,%20Part%202/index.html
http://number-none.com/product/Mipmapping,%20Part%201/index.html
https://github.com/castano/nvidia-texture-tools/wiki/ApiDocumentation
http://www.nvidia.com/object/real-time-normal-map-dxt-compression.html
http://wiki.polycount.com/wiki/DXT
https://en.wikipedia.org/wiki/S3_Texture_Compression

	Purpose
	Test Information
	Acknowledgments
	Main Menu
	Advanced Options Menu
	Sources

