
A plane transformation from 16 control points

The definition of the transformation

Assume we are given four cubic Bézier curves, B0, B1, B2, B3. Each is defined

by four control points, so we have 16 control points pij ∈ R2, and we write

Br(t) =

3∑
s=0

b3s(t)prs (r = 0, 1, 2, 3) (1)

where the b3s are the Bernstein polynomials. By grouping the 16 control points

differently we have another set of four Bézier curves:

Cs(t) =

3∑
r=0

b3r(t)prs (s = 0, 1, 2, 3). (2)

From the 16 control points we construct a transformation F0(u, v) : R2 → R2 as

follows:

F0(u, v) =

3∑
r=0

3∑
s=0

b3s(u)b3r(v)prs ((u, v) ∈ R2). (3)

This can be written in terms of the B’s

F0(u, v) =

3∑
r=0

(
b3r(v)

3∑
s=0

b3s(u)prs

)
=

3∑
r=0

b3r(v)Br(u), (4)

or in terms of the C’s

F0(u, v) =

3∑
s=0

(
b3s(u)

3∑
r=0

b3r(v)prs

)
=

3∑
s=0

b3s(u)Cs(v). (5)

An effort to visualize

The parameter t in (1) and (2) runs the whole R. Restricting it to the interval

[0, 1] we get what we call here Bézier arcs. We try now to visualize the arcs Bi

and Cj and the effect of F0. To this end, we assume that the arcs Bi run as in

the picture on the left, each horizontally, one above the other. It follows that

the arcs Cj each run vertically as in the picture on the right.

B3

B0

B2

B1

C0 C3

C2C1

1



The two sets of arcs are not independent: they share the control points prs, and

they cross each other like in the picture below. In particular, the outer arcs

B0, C3, B3, C0 have common end points so that they in fact form a closed curvy

quadrilateral:

p00
p03

p33
p30

B3

B0

C0

C3

Let us call the curvy quadrilateral B. We shall need also the unit square with

vertices (0, 0), (1, 0), (1, 1), (0, 1); we call it U . Easily from (4) and (5), for all

u and v,

F0(u, 0) = B0(u), F0(1, v) = C3(v), F0(u, 1) = B3(u), F0(0, v) = C0(v).

(6)

This means that F0 sends the sides of the unit square U onto the sides of the

curvy quadrilateral B. The following picture shows this very schematically.

B

U

F0

u

v

Along with the unit square, everything appearing on the plane is mapped by

F0 to some other place and distorted. As an example I drew here a pentagram

and what might be its image in F0: a curved pentagram.

Note that F0 is not conformal. It is not bijective either.

2



A simplified version

If a plugin is implemented directly from the above formulas, the user will have

to feed to the plugin all 16 control points prs, and they should be somehow

compatible to obtain anything useful. This is too awkward. A better idea is to

offer the user some restricted way to feed the inputs, and the missing inputs are

then internally computed from those using some reasonable default formulas.

I propose the following scenario. A plugin is implemented to expect as input

the outer Bézier arcs B0, C3, B3, C0 as one path; this is the curvy quadrilateral B.

That gives 12 of the 16 control points. To get the missing four, the inner

control points p11, p12, p22, p21, we require that the four high terms u3v3, u3v2,

u2v3, u2v2 in F0(u, v) vanish, the idea being to avoid too strong fluctuations in

F0. It turns out that these four vanishing conditions indeed enable us to solve

from (3) the control points p11, p12, p22, p21 in terms of the 12 input control

points. Calculations (rather long) lead to the equations

p11 =
1

9

[
− 4p00 − 2(p03 + p30)− p33 + 6(p10 + p01) + 3(p13 + p31)

]
,

p12 =
1

9

[
− 4p03 − 2(p00 + p33)− p30 + 6(p13 + p02) + 3(p10 + p32)

]
,

p21 =
1

9

[
− 4p30 − 2(p00 + p33)− p03 + 6(p20 + p31) + 3(p23 + p01)

]
,

p22 =
1

9

[
− 4p33 − 2(p03 + p30)− p00 + 6(p23 + p32) + 3(p20 + p02)

]
.

(7)

These work well in the cases I have tried.

The plugin

I implemented formula (3) with the simplifying idea and wrote a Gimp plugin

to transform paths. (It includes an approximation algorithm since the resulting

paths must be drawn as Bezier curves. I say nothing of that problem here. It

would be a story in its own right.)

Basically the plugin takes as input

• Path, the path to be transformed;

• Base, a path with two anchors A and B;

• Target, a path with two anchors P and Q;

• Shaper, a closed path with four anchors; this is the curvy quadrilateral B
with sides B0, C3, B3, C0;

and some others. The idea is to embellish the transformation F0 with suitable

wrapper functions which cause the anchors A and B of the Base to be sent onto

3



the anchors P and Q of the Target. So the Base and the Target are used to

determine from where to where the mapping goes.

There is another way to use the plugin: the Base and the Target each may

have four anchors rather than just two. This way will be explained only at the

end of this text.

An example

Here is an example figure:

Path

Base

TargetShaper

A
Transformed Path

B

P
Q

The Path to be transformed is the grid at top left. The Base (points A,B) is in

this example set precisely at the bottom edge of the grid. The Target (points

P,Q) is at bottom right. The Shaper is the curvy quadrilateral at middle

bottom. The effect of the whole transformation is that the grid is deformed

to the shape of the Shaper (this is the effect of F0) and simultaneously the

points A,B are sent to P,Q (thanks to the wrapper functions). For how this is

accomplished, see the next section.

The reason why in this case the shape of the Shaper shows so clearly in the

transformed Path, is mainly that the Base coincides with the bottom edge of

the grid.

How the plugin works

For those interested, here are some words about the inner working of the plugin.

See the following picture.

4



U

F0

A
B

h1

h2

B

P

Q

(1,0)(0,0)

Path
Final

F

B0

The implemented transformation is

F = h2 ◦F0 ◦h1 (8)

where F0 is the core transformation (3) and h1 and h2 are the wrapper functions.

(And the ’◦’ is a mathematical symbol telling that the three functions are applied

in succession: first h1 is applied, then F0, and finally h2.) The maps h1 and h2

are direct similitudes, so they preserve all shapes. As the picture tries to show,

h1 sends the original figure (the Path and the Base A,B) to a standard position:

A and B are sent to (0, 0) and (1, 0), respectively. Then F0 is applied. The final

map h2 is chosen so that it sends F0(h1(A)) = p00 and F0(h1(B)) = p03 to P

and Q, respectively.

This way of using h1 and h2 and going through the standard position ensures

that:

• The absolute size and location of the Path do not matter, only its size and

location relative to the Base. (Here “location” includes inclination.)

• The size and location of the Shaper will have no effect, only its shape.

(But because of the way the plugin is written, it does matter which arc of

the Shaper is the lowest on the screen; see below.)

About designing user inputs

It follows also that arc B0 has a special meaning. Namely, the Base is sent

to the line segment
[
(0, 0), (1, 0)

]
which is sent to the bottom edge B0 of the

Shaper and finally that is sent to the Target:

Base points A,B
h1−→ (0, 0), (1, 0)

F0−→ end points p00, p03 of B0

h2−→ Target points P,Q.

(9)

5



Therefore, it is crucial in the plugin to know, which of the four edges of B is B0

and in which direction it runs, and it is clearly also crucial that the directions of

the Base and the Target are chosen correctly. This problem must be addressed

to in the design of the GUI, since in Gimp the user generally does not know in

which direction a path runs, or in the case of a closed path, which is the starting

anchor.

The plugin is deliberately written with the situation as in the above example

in mind: The Shaper is quadrilateral with its sides horizontal, vertical, horizon-

tal, vertical, running counter-clockwise, and B0 is the bottom edge; the Base

and the Target are line segments with direction from the left to the right. If the

input paths do not obey such rules (for example, if the user inputs a Base which

runs from the right to the left), the plugin first internally arranges things to

what it thinks is good: It takes as B0 that edge of the input B which is located

lowest on the screen, and sets the direction of that edge to be from the left to

the right; the Base and the Target are set to run from the left to the right on

the screen. This way of doing things presumably best fulfills user’s intention.

But in the GUI of the plugin the user can override those decisions.

Base and Target which have four anchors

But the plugin allows also the Base and the Target to have four anchors. Then

instead of direct similitudes, the plugin uses projective transformations as the

mappings h1 and h2. This introduces further distortion to the resulting figure.

The idea is that, for example, one can choose four points from the original

figure, say A,B,C,D, and have them mapped onto another pre-chosen set of

four points P,Q,R, S. This is done by feeding to the plugin Base and Target

formed from these points. An example:

Path

Base

TargetShaper

A

Transformed Path

B

P
Q

D C

S
R

Here the Base (points A,B,C,D) is set to the outer boundary of the grid. The

6



Target (points P,Q,R, S) is the skew quadrilateral. The transformed Path is

further distorted (as compared with the previous example) so that A,B,C,D

are mapped onto P,Q,R, S.

Admittedly, this effect could be achieved by applying first the plugin with

the Base and the Target consisting of two anchors, and after that using Gimp’s

Perspective transform tool on the result. But this option seems good to be

available. There is a snag, however: h1 and h2 are projective transformations,

hence the whole process may fail (with a message “Hit an infinity”) since in-

finities occur quite naturally for such mappings. Also, collinear anchors in the

Base or in the Target, or even in the Shaper, are not allowed. Namely, instead

of (9), we have

Base points A,B,C,D
h1−→ (0, 0), (1, 0), (1, 1), (0, 1)

F0−→ corner points p00, p03, p33, p30 of B
h2−→ Target points P,Q,R, S,

(10)

and to define the projective transformations h1 and h2 no collinearities among

the points are allowed. If a failure occurs, the remedy is to make changes in the

input paths and try again.

7


