
A simplifying plugin

The problem: How to approximate a curve with a Bézier curve

Originally I was not going to make any path-modifying plugins. What I had

in mind was to find a better algorithm to approximate a general curve as a

composite Bézier curve. I already have an algorithm of my own, and I have

based several plugins on it: Parametric curves, Path transformations, Path

warping, and possibly others. And I am not at all satisfied with that rickety

approximation algorithm. Too complicated, too slow, too unreliable, and so on.

So, when I had some extra time in my hands I set out to find better.

The basic problem is as follows. Assume we have a regular curve, for example

a parametric curve, given as a mathematical expression r = f(t), a ≤ t ≤ b.

Denote p0 = f(a), p3 = f(b). Assume that we know the tangents at p0 and p3.

p0

p3

We want to draw a Bézier arc approximating the curve. And we want it to have

the same end points and the same tangents there. We need four control points

p0,p1,p2,p3, of which we already know p0 and p3, and the tangent condition

implies that p1 and p2 must be on the tangents.

p0

p3

p1 p2

The dashed line is one such Bézier arc. So, we have two unknowns (the han-

dle lengths), hence we need two equations. If we have such equations then in

principle we should be able to solve the handle lengths.

All this is very basic. The interesting question is, from where do we get the

two equations? Which conditions should we use? I have tried some. What they

are and what my current rickety algorithm is I rather leave unexplained. Let us

forget this and go to a new idea.

1



New idea for the problem of approximating a curve

Pondering different possibilities I realized that if we require that the Bézier

arc runs through a pre-defined point K and has there a pre-defined tangent,

then this leads to a group of three equations with three unknowns which can

be solved. Deriving the formulas (not shown here) was the main mathematical

hurdle (not hard).

p0

p3

K

Two of the unknowns are the handle lengths, and the third is the parameter

value t at which K is reached. Applying the formulas means solving one poly-

nomial equation of degree three, otherwise it is easy.

This gave an idea of a simple algorithm to solve the problem: First find on

the original curve the point K farthest from the chord. Then the curve has at

K normally a tangent parallel to the chord.

p0

p3

K

Then, using the derived formulas, find Bézier arcs which have these particular

three tangents at the three points p0, p3, K. There may be three solutions. If

all is well, one of them is a good approximation of the original curve. If not,

then use K to split the curve in two: take arcs p0K and Kp3. Then try the

algorithm for each half. And so on, recursively.

This is a neat idea, at least when compared with some I have tried previously.

But when one starts implementing, problems arise, such as:

• Some special cases need special treatment: the case when the tangents at

the end points are parallel; the case p0 = p3; and some others.

• It often appears that none of the 1–3 Bézier arcs is acceptable but if one

allows some variation in the point K or in the direction of the tangent at

K then an acceptable arc is found. Therefore, the code had better contain

2



loops running through some such variations prior to resorting to splitting

the arc.

• One needs some routine to measure how much a candidate Bézier arc

differs form the original curve. This routine appeared to be the biggest

culprit to grow the running time since it is called very often. So the routine

must be simple which means inaccuracy.

Applying the new idea to paths: simplifying a path

So, that all was about approximating a curve. Then it dawned on me that we

could use the same idea to simplify a path. Namely, instead of a curve given by

some mathematical expression, we can use any curve, for instance a composite

Bézier curve (curve consisting of butting Bézier arcs), such as a stroke of a path.

Or even something else.

So I dropped what I was doing and started to write a plugin to simplify

paths (thinking it would be a quick job...). To make it in any way practical I

had to add new twists:

• I wanted to allow the user to set some anchors protected so that the

process would not touch them. I did this by subdividing the strokes at

such anchors and processing each part separately.

• I wanted to smooth (large) corners that the user did not want to be pre-

served. For this I wrote routines.

And other minor problems.

How it looks like

Consider a path (more precisely: a stroke, or a part of a stroke) which we want

to simplify:

Find tangents at the end points. Find the point K farthest from the chord.

Recall that normally the path then has at K a tangent parallel to the chord.

3



tangent tangent

chord

K

Given these three tangents (through p0, p3, K), try to find a Bézier arc having

the same tangents at the same points. This is where the derived formulas (not

shown here) are used to compute handles p1, p2. The dotted arc below might

be one such try:

tangent tangent

K
tangent

p0 p3

Then measure the error: how much does the computed arc deviate from the

original path. If the error is below the allowed limit, accept the approximation.

Otherwise do as follows: Split the small top arc in two at K, creating there a

new anchor. Then call the algorithm (recursively) for both halfs p0K and Kp3.

And so on.

You see that the splitting step creates a new anchor at K. On the other

hand, original anchors, except for p0 and p3, are thrown away. Therefore, for

the most part the simplified path will have new anchors.

4


