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1 Introduction

Consider a given set of points in the plane. How can we draw a smooth curve

through them? Stuart Kent [1] outlines a method to construct a C2-continuous

composite cubic Bézier curve through the points. In this paper we extend the

method to produce G2-continuous curves, and we treat also closed curves.

2 Preliminaries

2.1 Composite Bézier curves

The composite Bézier curves we shall be working with are continuous curves

that are piecewise arcs of cubic Bézier curves. Each Bézier curve is determined

by four control points p0, p1, p2, p3, and the arc is defined as

B(t) =

3∑
k=0

b3k(t)pk (0 ≤ t ≤ 1) (1)

where b3k(t) (k = 0, . . . , 3) are the Bernstein polynomials of degree 3. We call

such arcs Bézier arcs. The points p0 and p3 are anchors and the difference

vectors −p0 + p1 and −p3 + p2 are handles (though below we use −p2 + p3 as a

handle).

A composite Bézier curve is a succession of arcs (1) where adjacent Bézier

arcs share a common anchor and the directions of the arcs are compatible. We

denote the anchors A0, . . . , An. We allow A0 = An in which case the composite

Bézier curve is closed.

2.2 Derivatives

We list the expression of B(t) in (1) and its derivatives:

B(t) = (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3,

B′(t) = 3
[
−(1− t)2p0 + (1− t)(1− 3t)p1 + t(2− 3t)p2 + t2p3

]
,

B′′(t) = 6
[
(1− t)p0 + (3t− 2)p1 + (1− 3t)p2 + tp3

]
.

(2)

Denoting pij = −pi +pj and doing some straight-forward calculations, we write

B′ and B′′ at the start point of the Bézier arc, B′(0) = 3p01,

B′′(0) = 6(−2p01 − p23 + p03),
(3)
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and similarly at the end point of the arc, B′(1) = 3p23,

B′′(1) = 6(p01 + 2p23 − p03).
(4)

2.3 Notations

Assume that we are given in the plane points A0, . . . , An, n ≥ 2. We assume

that Ai 6= Ai+1 (i = 1, . . . , n− 1). In particular, we allow A0 = An which case

means that we are constructing a closed curve. We want to draw a composite

Bézier curve having the points A0, . . . , An as anchors. We choose notations:

• The anchors A0, . . . , An.

• Bi(t) (0 ≤ t ≤ 1) is a Bézier arc from Ai to Ai+1 (i = 0, . . . , n− 1).

• The control points of Bi are

pi0 = Ai, pi1, pi2, pi3 = Ai+1 (i = 0, . . . , n− 1).

• The handles are{
xi = −pi0 + pi1 = pi,01,

yi = −pi2 + pi3 = pi,23,
(i = 0, . . . , n− 1).

The vectors xi and yi (i = 0, . . . , n − 1) are our unknowns: Since the anchors

Ai are given, once we solve the xi’s and yi’s we get the control points of Bi as

Ai, Ai + xi, Ai+1 − yi, Ai+1. (5)

Thus, we have 2n unknowns, so we must find 2n conditions.

We call the following edges:

Ãi = −Ai +Ai+1 = pi,03 (i = 0, . . . , n− 1). (6)

Then from (3) and (4) we get the derivatives B′i(0) = 3xi

B′′i (0) = 6(Ãi − 2xi − yi)
(i = 0, . . . , n− 1), (7)

and  B′i(1) = 3yi

B′′i (1) = 6(−Ãi + xi + 2yi)
(i = 0, . . . , n− 1). (8)
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3 Conditions

3.1 Stuart Kent and open C2-continuous curves

Stuart Kent constructs open C2-continuous curves. C2-continuity means that

at every anchor Ai (i = 1, . . . , n − 1) we have B′i−1(1) = B′i(0) and B′′i−1(1) =

B′′i (0). By (7) and (8) these come down to{
yi−1 = xi,

−Ãi−1 + xi−1 + 2yi−1 = Ãi − 2xi − yi
(i = 1, . . . , n− 1). (9)

So we have 2(n − 1) conditions. We need another two. Kent imposes ”natural

boundary conditions”: at the start and end of the curve the second derivatives

vanish:

B′′0 (0) = B′′n−1(1) = 0, (10)

or {
Ã0 − 2x0 − y0 = 0,

−Ãn−1 + xn−1 + 2yn−1 = 0.
(11)

3.2 Dissatisfaction with equal length handles

At each anchor Ai (i = 1, ..., n− 1), C1-continuity forces that B′i−1(1) = B′i(0),

or yi−1 = xi, hence the two handles are of equal length. This may result in

curves that are visually not so pleasing (matter of taste of course). I feel that

the two handles should be allowed to be of different lengths: If the edge Ãi−1 is

longer than the edge Ãi then yi−1 should be longer than xi; thus, a longer edge

should receive a longer handle. To this end, we may try to replace the condition

with

B′i−1(1) = kiB
′
i(0). (12)

where ki is a suitable real number reflecting the relative lengths of the two

edges (i = 1, . . . , n − 1). The case k1 = · · · = kn−1 = 1 gives C2-continuity.

Experiments suggest that choosing

ki =
(
|Ãi−1|/|Ãi|

)1/4
(13)

gives nice results.

If we do this, then the curve will no longer be C1-continuous, and conse-

quently not C2-continuous either. But it will still be G1-continuous (that is,

smooth: at each anchor the two tangents agree). And instead of C2-continuity it

is natural to require G2-continuity. This means continuity of curvature, which

seems more suitable for what we are doing; after all, it is a condition about
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the visual appearance of the curve while C2-continuity is a condition on the

parametric representations.

If we require (12) then how can we ensure continuous curvature? From the

general expression of the curvature of a curve (x, y) = f(t),

κ(t) =
f ′′(t)× f ′(t)
|f ′(t)|3

, (14)

we see that we can restore continuity of curvature by replacing the old condition

B′′i−1(1) = B′′i (0) with the condition

B′′i−1(1) = k2iB
′′
i (0). (15)

But yet another modification is possible. We introduce new parameters li (i =

0, . . . , n− 1) and set the condition

B′′i−1(1) + li−1B
′
i−1(1) = k2i

(
B′′i (0)− liB′i(0)

)
. (16)

The extra terms vanish in κ, so this does not change the curvatures at the

anchor Ai−1 but it changes the shape of the curve close by.

Experiments suggest that the following scenario is good in an implementa-

tion. We define 
ki =

(
|Ãi−1|/|Ãi|

)K/4

(i = 1, . . . , n− 1)

li = L (i = 0, . . . , n− 1)

(17)

and offer the constants K and L as input parameters, with K = 1 and L = 0

as good default values. Then K determines how strongly different edge lengths

are taken into account, and L determines how tightly the curve bends close to

the anchors. C2-continuity is obtained with K = 0.

3.3 Closed G2-continuous curves

From these considerations we derive now a new equation system to replace the

system of Stuart Kent.

We consider first the case of closed curves, not touched upon by Kent. This

case serves as a good prototype for all other cases since here we need no boundary

conditions.

Assume that in the anchor list A0, . . . , An we have A0 = An, so that this is

a cycle. As in Section 2.3 we denote by Bi(t) the Bézier arc from Ai to Ai+1

(i = 0, . . . , n− 1), and we keep the same notations xi, yi, Ãi (i = 0, . . . , n− 1).

We choose by some rule real numbers{
k0, . . . , kn−1,

l0, . . . , ln−1.
(18)
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We do not fix any method for choosing them but one scenario (17) was suggested

in Section 3.2. Note that we must now let i in ki and li run 0, . . . , n − 1 and

read indices modulo n.

We can now write directly the new equations to replace (9). First the equa-

tions for what happens at the anchors A1, . . . , An−1: We take conditions (12)

and (16) and we insert the derivatives (7) and (8) and obtain{
yi−1 = kixi,

−Ãi−1 + xi−1 + 2yi−1 + 1
2 li−1yi−1 = k2i (Ãi − 2xi − yi − 1

2 lixi)
(19)

for i = 1, . . . , n− 1. We notice that denoting

Li = 2 + 1
2 li (i = 0, . . . , n− 1) (20)

the equation is simplified a little:{
yi−1 = kixi,

−Ãi−1 + xi−1 + Li−1yi−1 = k2i (Ãi − Lixi − yi)
(21)

To obtain a closed G2-continuous composite Bézier curve we must require that

the same conditions (21) hold at the anchor A0 = An as well:{
yn−1 = k0x0,

−Ãn−1 + xn−1 + Ln−1yn−1 = k20(Ã0 − L0x0 − y0),
(22)

where we have written k0 and l0 instead of kn and ln.

Of course, we can include (22) in (21) if we let i = 0, . . . , n − 1 and take

indices modulo n. Let us write this once more:{
yi−1 = kixi,

−Ãi−1 + xi−1 + Li−1yi−1 = k2i (Ãi − Lixi − yi)
(23)

where i = 0, . . . , n− 1 and indices are taken modulo n. We have 2n unknowns

(x0, . . . , xn−1 and y0, . . . , yn−1) and 2n equations (23), so no extra boundary

conditions are needed. (Later, in the case of open curves, we shall need some

boundary conditions in place of (22).)

3.4 Open G2-continuous curves, case NN

Now we take the case of G2-continuous open composite Bézier curves and follow

the example of Stuart Kent in the case of C2-continuous curves. This means

that we use Kent’s natural boundary condition at both ends; see (10).

Since the curve is open, we allow An 6= A0.

We choose somehow real numbers{
k1, . . . , kn−1,

l0, . . . , ln−1.
(24)
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As the equations for what happens at the anchors A1, . . . , An−1 we have the

same equations (21):{
yi−1 = kixi,

−Ãi−1 + xi−1 + Li−1yi−1 = k2i (Ãi − Lixi − yi)
(25)

for i = 1, . . . , n − 1. But instead of closing the curve cyclically (now generally

An 6= A0) we keep Stuart Kent’s ”natural boundary conditions” (11):{
Ã0 − 2x0 − y0 = 0,

−Ãn−1 + xn−1 + 2yn−1 = 0.
(26)

We call this case ”NN”, meaning that we use the natural boundary condition

at both ends.

3.5 Open G2-continuous curves, case HH

Now we look at another choice for boundary conditions to replace the ”natural

boundary conditions” (10). We call this case ”HH”, meaning that the boundary

conditions we use come from pre-determining the extreme handle at each end.

We need two extra equations for the unknown vectors xi and yi. Suppose

we have, in addition to the anchors Ai, some two vectors P1 and Q2 and we

want the first Bézier arc to have control points A0, P1, P2, A1 and the last Bézier

arc to have control points An−1, Q1, Q2, An (for some unspecified P2 and Q1).

So, the handles at each end of the curve are pre-determined. This means, in

particular, that if A0 6= P1 and An 6= Q2 the tangents of the produced curve at

each end are pre-determined. We write X0 = −A0 + P1 and Yn−1 = −Q2 +An

and the boundary conditions are{
x0 = X0,

yn−1 = Yn−1.
(27)

These together with the equation system (25) form now the new equation sys-

tem.

3.6 Open G2-continuous curves, case NH

We take now case ”NH” which means that we use the natural boundary condi-

tion at the start and the alternative boundary condition of pre-determining the

handle at the end of the curve.

We assume that we are given a vector Q2 and we want the last Bézier arc

to have control points An−1, Q1, Q2, An (for some unspecified Q1). We denote
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Yn−1 = −Q2 +An. The boundary conditions are combined from (26) and (27):{
Ã0 − 2x0 − y0 = 0,

yn−1 = Yn−1.
(28)

Our equation system is now these together with the equation system (25).

3.7 Open G2-continuous curves, case HN

We take now case ”HN” which means that we use the alternative boundary

condition (pre-determining the handle) at the start and the natural boundary

condition at the end of the curve.

We assume that we are given a vector P1 and we want the first Bézier

arc to have control points A0, P1, P2, A1 (for some unspecified P2). We denote

X0 = −A0 + P1. The boundary conditions are combined from (26) and (27):{
x0 = X0,

−Ãn−1 + xn−1 + 2yn−1 = 0.
(29)

The equation system is these together with the equation system (25).

4 Equations

4.1 Closed curve

In the closed case the equations are (23) where we let i = 0, . . . , n− 1 and take

indices modulo n. We solve the y’s,

yi = ki+1xi+1 (i = 0, . . . , n− 1) (30)

where the indices are read modulo n. Inserting this to the second equation

in (23),

xi−1 + (Li−1ki + Lik
2
i )xi + k2i ki+1xi+1 = Ãi−1 + k2i Ãi (i = 1, . . . , n) (31)

where the indices are read modulo n. To easify notation we write

Ni = Li−1ki + Lik
2
i (i = 0, . . . , n− 1) (32)

where the indices are taken modulo n. As a matrix equation (31) is

MX = Y (33)

where

X =
(
x0, x1, . . . , xn−1

)T
, (34)
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Y =
(
Ãn−1 + k20Ã0, Ã0 + k21Ã1, . . . , Ãn−3 + k2n−2Ãn−2, Ãn−2 + k2n−1Ãn−1

)T
,

(35)

and

M =



N0 k20k1 1

1 N1 k21k2
. . .

. . .
. . .

1 Nn−2 k2n−2kn−1

k2n−1k0 1 Nn−1


. (36)

Zero entries in the matrix are not written. Solving this matrix equation gives

us x0, . . . , xn−1, and then y0, . . . , yn−1 are computed from (30).

4.2 Open curve, case NN

In the open case we have the equations (25) and (26) to solve. We eliminate

the y’s by first writing{
yi = ki+1xi+1 (i = 0, . . . , n− 2),

yn−1 = 1
2 (Ãn−1 − xn−1),

(37)

and inserting these to the rest of the equations. We get easily:
2x0 + k1x1 = Ã0,

xi−1 +Nixi + k2i ki+1xi+1 = Ãi−1 + k2i Ãi (i = 1, . . . , n− 2),

xn−2 +
(
Nn−1 − 1

2k
2
n−1
)
xn−1 = Ãn−2 + 1

2k
2
n−1Ãn−1.

(38)

We write this as a matrix equation

MX = Y (39)

where

X =
(
x0, x1, . . . , xn−1

)T
, (40)

Y =
(
Ã0, Ã0+k21Ã1, Ã1+k22Ã2, , . . . , Ãn−3+k2n−2Ãn−2, Ãn−2+ 1

2k
2
n−1Ãn−1

)T
,

(41)

and

M =



2 k1

1 N1 k21k2
. . .

. . .
. . .

1 Nn−2 k2n−2kn−1

1 Nn−1 − 1
2k

2
n−1


. (42)

This matrix equation gives us x0, . . . , xn−1, and then y0, . . . , yn−1 are computed

from (37).
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4.3 Open curve, case HH

With the variation explained in Section 3.5 we have the anchors A0, . . . , An and

two fixed vectors P1 and Q2, and we set X0 = −A0 +P1 and Yn−1 = −Q2 +An.

We choose real numbers (24) with some rule. We have the equations (25){
yi−1 = kixi,

−Ãi−1 + xi−1 + Li−1yi−1 = k2i (Ãi − Lixi − yi)
(43)

for i = 1, . . . , n− 1, and the boundary conditions{
x0 = X0,

yn−1 = Yn−1.
(44)

We solve the y’s in terms of the x’s,{
yi = ki+1xi+1 (i = 0, . . . , n− 2),

yn−1 = Yn−1.
(45)

and insert them. Then we have the equations
x0 = X0,

xi−1 +Nixi + k2i ki+1xi+1 = Ãi−1 + k2i Ãi (i = 1, . . . , n− 2),

xn−2 +Nn−1xn−1 = Ãn−2 + k2n−1Ãn−1 − k2n−1Yn−1.

(46)

As a matrix equation,

MX = Y (47)

where

X =
(
x0, x1, x2, . . . , xn−1

)T
, (48)

Y =
(
X0, Ã0+k21Ã1, . . . , Ãn−3+k2n−2Ãn−2, Ãn−2+k2n−1Ãn−1−k2n−1Yn−1

)T
,

(49)

and

M =



1

1 N1 k21k2
. . .

. . .
. . .

1 Nn−2 k2n−2kn−1

1 Nn−1


. (50)

From the matrix equation we get x0, . . . , xn−1. The remaining unknowns are

obtained from (45).
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4.4 Open curve, case NH

With the variation in Section 3.6 we have the anchors A0, . . . , An and a fixed

vector Q2, and we set Yn−1 = −Q2 + An. We choose real numbers (24) with

some rule. We have the equations (25){
yi−1 = kixi,

−Ãi−1 + xi−1 + Li−1yi−1 = k2i (Ãi − Lixi − yi)
(51)

for i = 1, . . . , n− 1, and the boundary conditions{
Ã0 − 2x0 − y0 = 0,

yn−1 = Yn−1.
(52)

We solve the y’s in terms of the x’s,{
yi = ki+1xi+1 (i = 0, . . . , n− 2),

yn−1 = Yn−1
(53)

and insert them. Then we have the equations
2x0 + k1x1 = Ã0,

xi−1 +Nixi + k2i ki+1xi+1 = Ãi−1 + k2i Ãi (i = 1, . . . , n− 2),

xn−2 +Nn−1xn−1 = Ãn−2 + k2n−1Ãn−1 − k2n−1Yn−1.

(54)

As a matrix equation,

MX = Y (55)

where

X =
(
x0, x1, x2, . . . , xn−1

)T
, (56)

Y =
(
Ã0, Ã0 +k21Ã1, . . . , Ãn−3 +k2n−2Ãn−2, Ãn−2 +k2n−1Ãn−1−k2n−1Yn−1

)T
,

(57)

and

M =



2 k1

1 N1 k21k2
. . .

. . .
. . .

1 Nn−2 k2n−2kn−1

1 Nn−1


. (58)

From the matrix equation we get x0, . . . , xn−1. The remaining unknowns are

obtained from (53).
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4.5 Open curve, case HN

With the variation in Section 3.7 we have the anchors A0, . . . , An and a fixed

vector P1, and we set X0 = −A0 +P1. We choose real numbers (24) with some

rule. We have the equations (25){
yi−1 = kixi,

−Ãi−1 + xi−1 + Li−1yi−1 = k2i (Ãi − Lixi − yi)
(59)

for i = 1, . . . , n− 1, and the boundary conditions{
x0 = X0,

−Ãn−1 + xn−1 + 2yn−1 = 0.
(60)

We solve the y’s in terms of the x’s,{
yi = ki+1xi+1 (i = 0, . . . , n− 2),

yn−1 = 1
2 (Ãn−1 − xn−1)

(61)

and insert them. Then we have the equations
x0 = X0,

xi−1 +Nixi + k2i ki+1xi+1 = Ãi−1 + k2i Ãi (i = 1, . . . , n− 2),

xn−2 + (Nn−1 − 1
2k

2
n−1)xn−1 = Ãn−2 + 1

2k
2
n−1Ãn−1.

(62)

As a matrix equation,

MX = Y (63)

where

X =
(
x0, x1, x2, . . . , xn−1

)T
, (64)

Y =
(
X0, Ã0 + k21Ã1, . . . , Ãn−3 + k2n−2Ãn−2, Ãn−2 + 1

2k
2
n−1Ãn−1

)T
, (65)

and

M =



1

1 N1 k21k2
. . .

. . .
. . .

1 Nn−2 k2n−2kn−1

1 Nn−1 − 1
2k

2
n−1


. (66)

From the matrix equation we get x0, . . . , xn−1. The remaining unknowns are

obtained from (61).
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5 Algorithm

1. Assume we have at least three points A0, . . . , An in the plane, successive

points always distinct, but we may have A0 = An (the case of a closed

curve).

2. Decide if we are making a closed curve or an open curve and in the latter

case which of the cases NN, HH, NH, HN we have at hand. For HH, NH,

or HN we need one or two fixed vectors to set up the boundary conditions.

For explanations see the opening paragraphs in Sections 3.3–3.7.

3. Denote Ãi = −Ai +Ai+1 (i = 0, . . . , n− 1).

4. Choose real numbers k0, . . . , kn−1 and l0, . . . , ln−1. You can take (17) as

a suggestion. (In the case of an open curve, k0 has no effect.)

5. Denote (cf. (20) and (32)){
Li = 2 + 1

2 li,

Ni = Li−1ki + Lik
2
i

(i = 0, . . . , n− 1) (67)

where indices are taken moduo n.

6. Solve the matrix equation MX = Y where X,Y,M are given by

• (34)–(36) for a closed curve;

• (40)–(42) for an open curve, case NN;

• (48)–(50) for an open curve, case HH;

• (56)–(58) for an open curve, case NH;

• (64)–(66) for an open curve, case HN.

7. The solution X from Step 6 gives x0, . . . , xn−1. Compute y0, . . . , yn−1

from

• (30) for a closed curve (indices modulo n);

• (37) for an open curve, case NN;

• (45) for an open curve, case HH;

• (53) for an open curve, case NH;

• (61) for an open curve, case HN.

8. Form Bézier arcs Bi(t) (i = 0, . . . , n− 1) by letting Bi have control points

Ai, Ai + xi, Ai+1 − yi, Ai+1. (68)

9. From B0, . . . , Bn−1 form a composite Bézier curve.
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